Studien zum Ramaneffekt

LXXI. Cyclopropancarbon- und Acryl-Säure und Derivate

Von

K. W. F. KOHLRAUSCH und R. SKRABAL korr. Mitglied d. Akad. d. Wiss.

151. Mitteilung aus dem physikalischen Institut der Technischen Hochschule Graz

Mit 6 Figuren im Text

(Eingegangen am 11. 5. 1937; vorgelegt in der Sitzung am 13. 5. 1937)

Wir haben die Versuche, deren Zweck und erste Ergebnisse in Mitteilung LXIV besprochen wurden¹, fortgesetzt und berichten im folgenden über die Ramanspektren der Cyclopropancarbon- und der Acryl-Säure, deren Methyl-, Äthyl-, n- und i-Propyl- und tertiär-Butylester, sowie der zugehörigen Säurechloride. Angeschlossen sind die Ergebnisse der Beobachtungen

an den tertiär-Butylestern der Essig- und n-Butter-Säure, sowie am n-Propyl-, i-Propyl-, tertiär-Butylester der Isobutter-Säure. 17 von diesen 19 Spektren sind bisher unbekannt gewesen; nur

¹ K. W. F. KOHLRAUSCH und R. SKRABAL, S.-B. Akad. Wiss. Wien (IIb) 146 (1937) 44; Mh. Chem. 70 (1937) 44.

Monatshefte für Chemie, Band 70

für Acryl-Säure bzw. deren Methylester lagen Angaben vor von BOURGUEL-PIAUX bzw. KOHLRAUSCH-PONGRATZ (Literatur im Anhang).

In den Fig. 1 und 2 sind die für die Derivate der Cyclopropancarbon- und Acryl-Säure gefundenen Ramanspektren, die zahlenmäßig im Anhang zusammengestellt sind, graphisch wiedergegeben. Aus den lagenkonstanten Linien wurden wieder die Spektren der Radicale C_3H_5 und C_2H_3 abgeleitet und in der

Fig. 2. Acryl-Säure und Derivate: H₂C:CH·CO·Y.

untersten Zeile beider Figuren eingetragen. Genauer gesprochen sind es die Spektren der Konfigurationen $C_3H_5 \cdot CO$ und $C_2H_3 \cdot CO$, wobei die innere Schwingung der Carbonylgruppe weggelassen wurde. Für das Auffinden dieser "Radical-Spektren" ist die Kenntnis der zur Esterkette gehörigen Linien, die für einen Teil der hier vorkommenden Ester durch die im hiesigen Institut durchgeführte Arbeit CHENGS² vermittelt wird, von großem Nutzen (vgl. auch Abschnitt 4 der folgenden Diskussion).

Diskussion der Ergebnisse.

Die hier und früher¹ mitgeteilten Ergebnisse werden im weiteren in mehrfacher Richtung verwertet. Im 1. Abschnitt der Diskussion wird das Verhalten der CO-Frequenz in Abhängigkeit von der Ringgröße besprochen; dabei handelt es sich um eine konstitutive Wirkung des Ringes nach außen. Im zweiten Teil

² H. C. CHENG, Z. physik. Chem. (B) 24 (1934) 293.

wird auf den Begriff "Radical-Spektren" näher eingegangen und am einfachsten Beispiel des Vinyl-Restes gezeigt, daß ihre Ableitung sinnvoll ist. Im dritten Teil werden diese Spektren in ihrem Zusammenhang mit der Ringspannung diskutiert. Und im letzten Abschnitt endlich werden die CHENGschen Angaben über die Spektren der Esterketten vervollständigt.

1. Konstitutiver Einfluß des gespannten Ringes auf eine konjugierte C:O-Gruppe.

In Tabelle 1 sind die CO-Frequenzen eingetragen, die für die Ester der Isobutter-Säure (Spalte 2, als Vertreter einer Säure mit offener, in α-Stellung verzweigter Kette), der Cyclopentan-, Cyclobutan-, Cyclopropan-, "Cycloäthan"-carbon Säure (Spalte 3 bis 6) gemessen wurden. Die 6. Zeile enthält die aus den 5 Estern gebildeten Mittelwerte, die siebente die für die CO-Frequenz der Säurechloride beobachteten Werte.

	YR	offen	$ \begin{array}{c} n=5 \\ \bigcirc \\ \hline \end{array} $	n=4	n=3	n=2
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{cccc} -\mathrm{OCH}_3 & \ldots & \cdot \\ -\mathrm{OC}_2\mathrm{H}_5 & \ldots & \cdot \\ -\mathrm{OC}_3\mathrm{H}_7 & \ldots & \cdot \\ -\mathrm{OCH}(\mathrm{CH}_3)_2 & \cdot \\ -\mathrm{OC}(\mathrm{CH}_3)_3 & \ldots & \cdot \\ \mathrm{Mittel} & \ldots & \cdot \\ -\mathrm{Cl} & \ldots & \cdot \end{array}$	1733 1729 1726 1725 1722 1727 1803	1728 1726 1725 1722 1720 1724 1791	1725 1724 1725 1719 1716 1722 1789	1723 1719 1719 1716 1717 1719 1770	1722 1718 1720 1717 1714 1718 1752

 $\label{eq:tabelle1} \begin{array}{c} Tabelle \ 1. \end{array}$ Werte der C:O-Frequenz Y ${\boldsymbol \cdot}$ CO ${\boldsymbol \cdot}$ R.

Wir haben bereits ¹ darauf verwiesen, daß die CO-Frequenz nicht an einer scharfen, sondern an einer durchschnittlich $14 \, cm^{-1}$ breiten Linie bestimmt wird, daß also die Messung nicht sehr genau sein kann. Trotzdem sieht man in Tabelle 1, daß die Einzelwerte der Zeilen 1 bis 5 mit nur wenigen Ausnahmen von links nach rechts abnehmen; in den Mittelwerten der 6. Zeile ist keine Ausnahme mehr vorhanden. Wesentlich stärker als in den Estern ist diese Frequenzabnahme in den Säurechloriden ausgeprägt, deren CO-Gruppe anscheinend konstitutiv empfindlicher ist.

 27^{*}

An die bekannte Tatsache, daß bei Konjugation einer CO-Gruppe mit einer Äthylenbindung (also in der Konfiguration $C:C\cdot C:O$) die CO-Frequenz erniedrigt wird, sei durch die folgende Gegenüberstellung^s der CO-Frequenzen im gesättigten und ungesättigten Molekül erinnert:

 $\begin{array}{rll} Y = NH_2; \ C_6H_5; & R & ; & H & ; & OR & ; & CI \\ H_3C \cdot H_2C \cdot CO \cdot Y & : \ \omega & (C:O) = 1662; & 1680; & 1709; & 1722; & 1733; & 1786 \\ H_3C \cdot HC : CH \cdot CO \cdot Y : \ \omega & (C:O) = 1658; & 1649; & 1668; & 1685; & 1714; & 1761 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

Sieht man in dieser konstitutiven Beeinflussung (Lockerung der Festigkeit) der konjugierten CO-Gruppe eine für die ungesättigte Bindung charakteristische Äußerung im Schwingungsspektrum; so kann man das Ergebnis von Tabelle 1 in folgender Art ausdrücken:

"Der an der Fähigkeit zur konstitutiven Beeinflußung beurteilte Grad der Ungesättigtheit von Kohlenstoffringen nimmt mit der Ringspannung bis zum Höchstwert im Zweier-Ring zu."

Es sei uns in diesem Zusammenhang gestattet, einige aus anderen Forschungsgebieten stammende Zahlen in ihrer Abhängigkeit von der Ringgliederzahl bzw. Ringspannung in Tabelle 2 zusammenzustellen. Zeile 1: Zahl der Ringglieder; für n=6 ist der Ring nicht eben⁴ und daher spanpungsfrei; Zeile 2: Abweichung $\Delta \alpha$ des Valenzwinkels vom Tetraederwinkel [$\Delta \alpha = 109^{\circ}28$ $-(180 - \frac{360}{n})$; Zeile 3: Verbrennungswärme je CH₂-Gruppe (nach W. HUCKEL); Zeile 4 und 5: Inkremente ΔP und ΔR des Parachors und der Molekular-Refraktion: Zeile 6: Erste Dissoziationskonstante K_1 der Trans-1, 2-Dicarbon-Säure in wässeriger Lösung; die Zahlen für die Zeilen 4, 5, 6 wurden der Zusammenstellung WASSERMANNS⁵ entnommen ; Zeile 7: Mittlere ultraviolette Absorptionsfrequenz v jener Teilbanden esocyclischer Ketone (Cyclohexanon bis Keten in Hexan gelöst), deren Abstand im Mittel $1500 \, cm^{-1}$ beträgt⁶; Zeile 8: CO-Frequenz ω im Säurechlorid, vgl. Zeile 7 von Tabelle 1.

⁸ K. W. F. KOHLRAUSCH und A. PONGRATZ, Z. physik. Chem. (B) 27 (1934) 176, Tabelle 4.

⁴ Vgl. z. B. K. W. F. Kohlrausch und W. Stockmair, Z. physik. Chem. (B) 31 (1936) 382.

⁵ A. WASSERMANN, S. 791 ff in FREUDENBERGS Stereochemie (1932).

⁶ G. FÖRSTER, R. SKRABAL und J. WAGNER, Z. Elektrochem. 43 (1937) 290.

Ringspannung und Molekül-Eigenschaften.							
1. Ringgliederzahl	n =	6	5	4	3	2	
2. Winkelverengung	$\Delta \alpha =$	0	1º 28'	19º 28′	49º 28 ′	109º 28'	
3. Verbrennungswärme je CH	Q =	158	159	165.5	168.5	167-173 kg cal/M.	
4. Inkrement d. Parachors	$\Delta P =$	+0.8	+3	+6	+12.5	+19	
5. Inkrement d. Mol-Refrakt.	$\Delta R = $	0	0	+0.48	+0.71	1'73	
6. Dissoziationskonstante	$K_1 =$		1.29	1.63	2.24	$10 \cdot 10^{-4}$	
7. Ultraviolette Absorption	ν <i>=</i> ==	358.0	353'5	337'5		$315.0 \cdot 10^2 \ cm^{-1}$	
8. CO-Frequenz i. Säurechlori	d ω ==	(1803)	1791	1789	1770	1752 cm ⁻¹	
a. 00-r requenz 1. Saurechori	u ===	(1003)	1791	1/09	1170	1102 cm	

Tabelle 2. Ringspannung und Molekül-Eigenschaften.

Zu Tabelle 2 sei bemerkt: Die Zahlen für die Verbrennungswärmen sind veraltet und nicht unanfechtbar. Sind sie aber wenigstens dem Gange nach richtig, so bedeutet die Zunahme von Q eine Zunahme des Energieinhaltes mit zunehmender Ringspannung; letztere kann an der modellmäßigen Winkelverengung $\Delta \alpha$ gemessen werden. Wofür dieses Mehr an Energie, das bei der Verbrennung frei wird, im Molekül verwendet wird, ist zunächst nicht bestimmt. Die in Zeile 4 angegebene Zunahme des begrifflich wenig klaren "Parachores" besagt darüber nichts; man kann nur feststellen, daß sich auch in bezug auf ΔP die Ringe mit zunehmender Spannung immer mehr der Äthvlenbindung nähern. Die in Zeile 5 angegebene Zunahme der Molrefraktion gegenüber dem Erwartungswert besagt, mindestens nach der klassischen Dispersionstheorie, daß die Polarisierbarkeit der Elektronen mit der Ringspannung zunimmt; nicht entscheiden läßt sich, welchen Anteil die Elektronen der C-Cund welchen die der C-H-Bindungen an dieser Zunahme haben, ob also die Elektronenverschieblichkeit für beide Sorten von Valenzelektronen zunimmt, oder für eine zu-, für die andere abnimmt. Die in Zeile 6 beschriebene Zunahme der ersten Dissoziationskonstanten gibt diesbezüglich wenigstens einigermaßen Aufschluß, denn sie wird ja üblicherweise auf eine Zunahme der Polarisierbarkeit jener Bindung zurückgeführt, die die gegenseitige azidifizierende Wirkung der beiden in 1, 2-Stellung befindlichen Carboxylgruppen weiterleitet: dies ist die C.C-Bindung. Der in Zeile 7 dargestellte Gang der Ultraviolettabsorption in esocyclischen Ketonen ist gleichfalls nicht unmittelbar zu deuten; vermutlich sind es die Elektronen der C:O-Gruppe, die absorbieren. Ist dies der Fall und bezeichnet man die im Keten H₂C:C:O eintretende Rotverschiebung der C:O-Absorptionsbande

als eine chromophore Wirkung der Kumulierung von C:O mit C:C, dann kann man aus Zeile 7 folgern: Die chromophoren Eigenschaften der Ringe wachsen mit zunehmender Ringspannung.

So ergibt sich aus Tabelle 2: Sowohl hinsichtlich des Energieinhaltes (Zeile 3), als des Parachors (Zeile 4), der Polarisierbarkeit (Zeile 5 und 6), der chromophoren Eigenschaft (Zeile 7) und der konstitutiven Wirkung nach außen (Zeile 8) nähern sich die Eigenschaften der Ringe mit zunehmender Spannung denen des Athylens. Ähnliches gilt für jenes chemische Verhalten, nach welchem man den Grad der Ungesättigtheit beurteilt: "Das Trimethylen verhält sich in der Leichtigkeit, mit der es Wasserstoff und Halogon addiert, wie ein Olefin" (zitiert nach O. SCHMIDT)⁷.

Nun sind nach E. HÜCKEL⁸ an der Doppelbindung zwei Paare von Elektronen beteiligt: Die auch in der Einfachbindung auftretenden σ- und die in der Einfachbindung nicht unterzubringenden π -Elektronen (O. SCHMIDT⁷ bezeichnet sie als A- bzw. B-Elektronen); erstere sind merklich fester gebunden als letztere, so daß für die hohe Polarisierbarkeit der Äthylenbindung wesentlich die π-Elektronen maßgebend sind. Insoweit die eben zusammengetragenen physikalischen Außerungen der gespannten Ringe mit der Beweglichkeit der Elektronen der C.C.Einfachbindung zusammenhängen, bedeutet die mit zunehmender Ringverengung eintretende Annäherung dieser Eigenschaften an die der Doppelbindung, daß die 5-Elektronen in bezug auf ihre Beweglichkeit den π -Elektronen immer ähnlicher werden. Es ist sehr gut möglich, daß die Ursache hiefür in der mit der Ringverengung zunehmenden räumlichen Elektronenkonzentration zu suchen ist; hierin stimmen wir mit O. SCHMIDT 7 überein. Dies besagt aber nicht, daß sich auch die im Schwingungsspektrum zum Ausdruck kommende Festigkeit (Valenz-Federkraft) der Einfachbindung (nur σ-Elektronen) jener der Doppelbindung (σ- und π-Elektronen) angleicht. In dieser Hinsicht stimmen wir mit der Erklärung, die O. SCHMIDT für gewisse die Bindungsfestigkeit betreffende Befunde im Schwingungsspektrum (vgl. auch Abschnitt 3) gegeben hat, nicht überein 9.

⁹ Übrigens handelt es sich vielleicht um ein Mißverständnis; SCHMIDT sagt: "Nun wird auch die auffällige Verschiebung der für die C—C-Bindung

⁷ O. SCHMIDT, Z. Elektrochem. 43 (1937) 244.

⁸ Vgl. z. B. die neueste Arbeit: E. Hückel, Z. physik. Chem. (B) 35 (1937) 163.

2. Die Radicalspektren.

Für das Studium der Spektren ebener, gesättigter und gespannter Kohlenstoffringe stehen nur drei Moleküle zur Verfügung: Cyclopentan, Cyclobutan, Cyclopropan. Die Spektren des Fünfer- und Dreier-Ringes sind bekannt, jedoch ist es uns bisher nicht gelungen Cyclobutan selbst herzustellen. Da dies einen Ausfall von 1/3 der Studienobjekte bedeutet, wird im folgenden Abschnitt die Diskussion an Hand der aus den Spektren substituierter Ringe abgeleiteten "Radicalspektren" durchgeführt. Da erhebt sich aber die Frage, inwieweit die Spektren der Radicale C₅H₉, C₄H₇, C₃H₅ noch Ähnlichkeit mit den Spektren der zugehörigen Moleküle haben. Z. B. weiß man¹¹, daß die Substitution eines H-Atomes des Benzolringes die Schwingungen des Kerngerüstes sowohl der Form als der Frequenzhöhe nach stark verändert; allerdings liegen in diesem Fall Ring und Substituent in der gleichen Ebene, so daß die Koppelung der Kern- und Substituentenbewegung wesentlich größer ist.

charakteristischen Ramanlinie im Trimethylen nach höheren Energiewerten verständlich, die Kohlbausch-Seka¹⁰ beobachteten und nicht zu deuten vermochten: Die A-Elektronen in der C-C-Bindung des Trimethylens haben eine höhere Energie als die entsprechenden, z. B. im Pentamethylen und das stoßende Photon gibt daher weniger Energie ab oder nimmt von ihnen mehr auf als bei normalen A-Elektronen". Dazu ist zu bemerken: Erstens ist (vgl. Abschnitt 3) eine Verschiebung der Pulsationsfrequenz (um diese handelt es sich) der Ringe mit zunehmender Ringverengung nach höheren Werten das theoretisch zu erwartende (vgl. die Schwingungsformeln 1 und 2 auf p. 732 der zitierten Abhandlung). Nicht diese Frequenzerhöhung an sich ist das Bemerkenswerte und das mit dem Begriff "Ringspannung" in Verbindung zu bringende; vielmehr der Umstand, daß die beobachtete Erhöhung geringer ist, als die nach der Näherungsrechnung zu erwartende. Dieses Zurückbleiben der Frequenzverschiebung hinter der Erwartung brachten wir in Verbindung mit einer Abnahme der C.C-Federkraft und dies wiederum mit der Ringspannung. Zweitens ist festzustellen, daß beim Mechanismus des Ramaneffektes die Energieänderung des gestreuten Photons mit dem Energieinhalt der gestoßenen Elektronen nur insoferne zusammenhängt, als letzterer für die Festigkeit der Atombindung maßgebend ist. Und weil Lockerung oder Energievermehrung der Bindeelektronen doch wahrscheinlich eine Lockerung der Festigkeit der Atombindung zur Folge hat, ist die Pulsationsfrequenz niedriger als der für normale A-Elektronen bzw. normale C.C-Bindungen ausgesprochenen Erwartung entspricht. Man denke etwa an das Boursche Modell des Wasserstoffmoleküles, das von dem einen von uns schon 1934 bei Vorträgen in Paris zur Veranschaulichung solcher Zusammenhänge herangezogen wurde.

K. W. F. Kohlrausch und R. Seka, Ber. dtsch. chem. Ges. 69 (1936) 729.
 Vgl. K. W. F. Kohlrausch, Physik. Z. 37 (1936) 58.

Man wird erwarten, daß die Störung durch die Substitution cet. par. umso merklicher wird, je kleiner das zu störende System ist. Wir betrachten daher im folgenden einerseits den Zweier-Pseudoring, andererseits den wahren Dreier-Ring. Für beide sind die Spektren der Kohlenwasserstoffe selbst gut bekannt und noch verhältnismäßig einfach.

a) Das Spektrum des Äthylens und des Vinyl-Radicals.

Fig. 3. Äthylen und einfache Äthylenderivate.

Zu Fig. 3. 1. Äthylen nach BONNER¹²; 2. Propylen nach ANANTHAKRISHNAN¹³; 3. Vinyl-Acetylen nach GLOCKLER-DAVIS¹⁴; 4. Vinyl-Cyanid, eigene unveröffentlichte Beobachtung; im Gebiet der CH-Valenzfrequenzen ergänzt durch Beobachtungen von TIMM-MECKE¹⁵; 5. Radicalspektrum, vgl. Fig. 2; 6. Vinyl-chlorid und 7. Vinyl-Bromid, eigene Messungen¹⁶; im Gebiet der CH-Valenzfrequenzen ergänzt durch Beobachtungen von WEST-FARNSWORTH¹⁷ an $C_2H_3 \cdot Cl.$ — Im oberen Teil der Figur sind die schematischen Schwingungsformen eingezeichnet; ihre Bezifferung stimmt mit jener der Linien im Athylenspektrum überein. Zuordnung nach BONNER¹². Die mit *u. r* bezeichneten Formen der ersten Zeile kommen nur in ultraroter Absorption vor (mit Ausnahme von ω_{12}) und sind im Spektrum strichliert ein-

- ¹² L. B. BONNER, J. Amer. chem. Soc. 58 (1936) 34.
- ¹³ R. ANANTHAKRISHNAN, Proc. Indian Acad. (A) 3 (1936) 527.
- ¹⁴ G. GLOCKLER und H. M. DAVIS, J. chem. Physics 2 (1934) 881.
- ¹⁵ B. TIMM und R. MECKE, Z. Physik 94 (1935) 1; 97 (1935) 221.
- ¹⁶ K. W. F. KOHLRAUSCH und W. STOCKMAIR, Z. physik. Chem. (B) 29 (1935) 292.
- ¹⁷ W. WEST und M. FARNSWORTH, Trans. Faraday Soc. 27 (1931) 145.

getragen. Die mit *R* bezeichneten Formen sind Raman-aktiv, ultrarot inaktiv und entweder totalsymmetrisch und im Ramanspektrum polarisiert (ω_1 , ω_2 , ω_3) oder depolarisiert, weil nicht voll symmetrisch.

Das Schwingungsspektrum des Äthylens wurde in den letzten Jahren eingehend theoretisch bearbeitet (SUTHERLAND-DENNISON 18, BONNER 12, MANNEBACK und Mitarbeiter 19), und die in der Figur angedeutete Zuordnung ist - mindestens bezüglich der ebenen Schwingungsformen ω_1 bis ω_9 — als gesichert anzusehen. Wird nun eine CH-Bindung ersetzt durch eine CX-Bindung (X=CH₃, Cl, Br in Nr. 2, 6, 7), dann verschwinden je eine v(CH) und $\delta(CH)$ Frequenz; dafür liefert aber die Kette jetzt nicht mehr nur eine Kettenschwingung ($\omega_1 \sim 1600$), sondern drei, und zwar zwei Valenzschwingungen (darunten ω_1) und eine Deformationsschwingung; diese sind in der Figur durch * gekennzeichnet. Speziell im Falle X=CH₃ kommen hiezu noch die CH-Frequenzen der Methylgruppe. Ist der Substituent wie im Falle der Beispiele Nr. 3, 4, 5 mit X=C:CH, C:N, C:O aus zwei schweren Atomen zusammengesetzt, dann entsteht eine Vierer-Kette mit 3 Valenzschwingungen (darunter ω_1 und die in der Figur nicht eingezeichneten inneren Frequenzen 2099 der C:C, 2224 der C:N und \sim 1700 der C:O-Gruppe), mit zwei ebenen und einer zur Ebene senkrechten Deformationsschwingung. Die zugehörigen Linien wurden, wenn auch die Zuordnung 20 nicht in allen Fällen als gesichert gelten kann, wieder mit * gekennzeichnet. Was nun überbleibt, kann zusammen mit $\omega_1 \sim 1600$ als Spektrum des Radicals H₂C:CH angesehen werden.²⁰

In diesem Radical sollten alle Schwingungsformen Ramanaktiv sein; d. h. es sollten insgesamt 9 Linien im Restspektrum auftreten, und zwar außer $\omega_1 \sim 1600$ noch: 3 CH-Valenzfrequenzen (beob.: 2990(s), 3030(st), 3110(st), 3 ebene CH-Deformationsfrequenzen [beob.: 1400, 1280, 900-960(?]], 2 nicht ebene CH-Deformationsfrequenzen (beob.: 1000-1100, 600-700).

¹⁸ G. B. SUTHERLAND und D. M. DENNISON, Proc. Roy. Soc. London (A) 148 (1935) 250.

¹⁹ J. M. DELFOSSE, Ann. Soc. Bruxelles (B) 45 (1935) 114; C. MANNEBACK und A. VERLEYEN, ebenda 56 (1936) 349; 57 (1937) 31.

²⁰ Die Zuordnung weicht in einigen Fällen ab von derjenigen, die TIMM-MECKE¹⁵ für Vinyl-Acetylen und -Cyanid angegeben haben. Die von GLOCKLER-DAVIS¹⁴ für Vinyl-Acetylen gegebenen Schwingungsformen und ihre Zuordnung zu den Frequenzen halten wir in einigen Fällen für verfehlt. Wir glauben auch nicht, daß die im soeben erschienenen Heft Nr. 6 der Z. physik. Chem. (B) 35 (1937) 453 von E. BARTHOLOMÉ und J. KARWEIL versuchte Zuordnung der Frequenzen mit $\Delta v < 700 \ cm^{-1}$ das Richtige trifft. Man erkennt an Fig. 3 und der eben durchgeführten Analyse, daß sich das für das Radical $H_2C:CH \cdot CO$ aus Fig. 2 abgeleitete Spektrum gut in das übrige an ähnlich gebauten Molekülen erworbene Erfahrungsmaterial einfügt. Nur eine Valenzfrequenz der Vierer-Kette (Fragezeichen in Zeile 5 von Fig. 3), die im Gebiet $800-900 \, cm^{-1}$, in welchem auch die Frequenzen der Esterkette zu suchen sind, zu erwarten und überdies wahrscheinlich nicht lagenkonstant ist, konnte nicht mit hinreichender Sicherheit ermittelt werden.

b) Das Spektrum des Cyclopropans und des Cyclopropyl-Radicals.

Fig. 4. Cyclopropan und einfache Cyclopropyl-Derivate.

Zu Fig. 4. Nr. 2 Methylcyclopropan nach LESPIEAU-BOURGUEL-WAKEMAN²¹; Nr.3 Cyclopropyl-Cyanid, eigene unveröffentlichte Messung; Nr.4 Radical-Spektrum, abgeleitet aus Fig. 1. Nr. 1 Cyclopropan: Messungen liegen vor von LESPIEAU-BOUR-GUEL-WAKEMAN²¹, KOHLRAUSCH-KÖPPL²², ANANTHAKRISHNAN²³, HARRIS-ASHDOWN-ARM-STRONG²⁴; letztere erregten mit λ 2537 im Ultraviolett, die übrigen arbeiteten mit sichtbarem Licht. Wir haben auf Grund der späteren Ergebnisse unsere eigenen Beobachtungen revidiert und eine ganze Anzahl von schwachen Linien gefunden, die wir, weil zu wenig gesichert, nicht verwendet hatten; wir haben nun unser (*m F* und *o F* gewonnenes) Streuspektrum nach Korrektur eines die Linie 1439 betreffenden Rechenfehlers mit den Spektren von LESPIEAU bzw. ANANTHAKRISHNAN

²¹ R. LESPIEAU, M. BOURGUEL und R. WAKEMAN, Bull. Soc. chim. France 51/52 (1932) 400.

²² K. W. F. KOHLRAUSCH und F. KÖPPL, Z. physik. Chem. (B) 26 (1934) 209.

²³ R. ANANTHAKRISHNAN, Proc. Indian Acad. 4 (1936) 82.

²⁴ L. HARRIS, A. A. ASHDOWN und R. T. ARMSTRONG, J. Amer. chem. Soc. 58 (1936) 852.

kombiniert, die Zahlenwerte gemittelt und neu zugeordnet. Das so abgeleitete Ramanspektrum, dem ziemliche Sicherheit zukommt, ist:

 $\begin{array}{l} \Delta \mathbf{v} = 733 \ (00) \ (k_1, \ e_2); \ 864 \ (7b) \ (k_3, \ i_2, \ e_3, \ c_1); \ 1186 \ (11) \ (k_3, \ i_2, \ f_3, \ e_3); \ 1439 \\ (k_2, \ e_3; \ \text{doppelt})^{25}; \ 1503 \ (0) \ (k_1, \ e_1?); \ 2852 \ (0) \ (k_1?, \ e_1); \ 2953 \ (^1_2) \ (q_2, \ p_2?, \ k?, \ e?); \\ 3010 \ (8) \ (q_2, \ o_2, \ k_3, \ i_3, \ e_3); \ 3027 \ (8) \ (q_2, \ o_2, \ k_3, \ i_3, \ e_2); \ 3079 \ (3b) \ (q_1, \ o_1, \ k_3, \ i_1, \ e_1). \end{array}$

Der Zahlenindex neben der Erregerlinie gibt an, in wievielen der 3 herangezogenen Beobachtungen die betreffende Streulinie gefunden wurde; ein Fragezeichen bedeutet, daß die Streulinie auch anders zugeordnet werden kann; als relative Intensitäten wurden die eigenen Schätzungen verwendet, die bezüglich der Absolutwerte fast genau halb so groß sind als die von ANANTHAKRISHNAN angegebenen. Alle angegebenen Ramanlinien wurden mit guter Zahlenübereinstimmung auch von HARRIS gefunden; außerdem aber noch die Linien:

 $\Delta v = 382 (s s), 1022 (m), 1454 (m), 1873 (s s).$

Für diese Linien haben die übrigen Autoren keinerlei Andeutung erhalten; aus diesem Grunde und weil die amerikanischen Autoren gewisse Schwierigkeiten betreffend photochemische Einflüsse des ultravioletten Lichtes hatten, werden sie im weiteren weggelassen.

Im oberen Teil der Fig. 3 sind die Schwingungsformen für Cyclopropan schematisch angegeben. $\omega_1 =$ Pulsationsschwingung der Kette; ω_2 , ω_3 sind die beiden anderen miteinander entartenden Schwingungsformen der Kette; v, δ , γ sind die Typen der Valenz- und Deformationsschwingungen der 3 Methylengruppen; sie liegen 18 Schwingungsformen zugrunde.

Wir möchten diese Gelegenheit benützen, um einen zweifachen Fehler, der seinerzeit²² gemacht und von anderen Autoren übernommen wurde, zu korrigieren: Regulär gebautes Cyclopropan hat nicht die Symmetriegruppe C_{3_h} sondern D_{3_h} ; überdies sind in beiden Fällen *beide* Typen von entarteten Schwingungen raman-aktiv und depolarisiert²⁶. Die Auswahlregeln für C₃H₆ sind in Tabelle 3 zusammengestellt.

	a ^x	° _h	$\begin{array}{c} p, dp, a \\ a, ia = \end{array}$	v=pola aktiv, i	r.; dep naktiv	olar.; verb in der Ultr	oten i arotab	m R sorpti	E. on
s	8	8	A_{1}^{\prime}	p	ia	ω		δ,	۷ ₁
8	8	as	$A_1^{''}$	v	a			δ_2	v_2
8	as	8	A'_2	v	ia		γ_1		
8	as	as	A_2''	v	ia		γ_2		
e	e	., 8	C'	dp	a	ω_2, ω_3	۲ ₁	δ	٧ _i
e	e ·	as	C"	dp	ia		γ_2	δ_2	٧ ₂
S	Symmetr	ie	Typus	Ausv	zahl	Kette	_	\mathbf{CH}	

Tabelle 3. Auswahlregeln für Cyclopropan; D_{3h} .

²⁵ Vgl. dazu auch den Befund in S. BHAGAVANTAM, Proc. Indian Acad. (A) 2 (1935) 86.

²⁶ G. PLACZEK hat diesen auf p. 90 seiner Arbeit (Leipziger Vorträge 1931) auftretenden Fehler selbst handschriftlich korrigiert. Nach Tabelle 3 sind somit im Ramanspektrum zu erwarten:

	Kette	· CH
Polarisierte Linien:	ω1	δ ₁ , ν ₁
depolarisierte Linien :	ω2, 3	$\gamma_1 \gamma_2, \ \delta_1 \ \delta_2, \ v_1 \ v_2$

Das sind insgesamt 10 Linien, von denen noch einige infolge zufälliger Entartung frequenzgleich sein, andere wegen zu geringer Intensität unbeobachtet bleiben könnten. Doch wurden 11 Linien beobachtet; darunter zwei polarisierte starke ν (CH)-Frequenzen und insgesamt 5 ν (CH) statt der erwarteten drei. Irgend etwas stimmt hier nicht; was die Ursache dafür ist, läßt sich schwer angeben. Sicher ist nur, daß die folgende Zuordnung richtig ist. (Polarisationsmessungen von ANANTHAKRISHNAN²³.)

 $\omega_{2}, {}_{3} = 864 (7b) (depol.); \omega_{1} = 1186 (11) (pol.); v_{1} = 3010 oder 3027 (8) (polar.); v_{2} = 3079 (3b) (depol.).$

Diese Unsicherheit macht eine eingehendere Diskussion der an den Derivaten gewonnenen Spektren, in denen wieder alle Schwingungsformen des Cyclopropylrestes Raman-aktiv sein sollten, unmöglich. Wir können nur die für das Weitere wesentliche qualitative Feststellung machen, daß sich das aus Fig. 1 abgeleitete Spektrum des Radicals $C_3H_5 \cdot CO$ in die an den Molekülen Nr. 2 und 3 gewonnenen Erfahrungen zwanglos einfügt und daß insbesondere die Pulsationsfrequenz und die \vee (CH)-Frequenzen im Radicalspektrum an derselben Stelle liegen, wie in den übrigen Spektren. Da man dieselbe Aussage auch beim Vergleich der Spektren des Radicals $C_5H_9 \cdot CO$ und des Moleküles C_5H_{10} und seiner einfachen Derivate²⁷ erhält, so kann man wohl sicher sein, daß auch die entsprechenden aus dem Spektrum des Cyclobutyl-Radicals gewonnenen Aussagen für das noch unbekannte Cyclobutan gelten.

3. Ringspannung und Ringspektrum.

In Fig. 5 sind die in der früheren und jetzigen Mitteilung abgeleiteten Spektren der ringförmigen Radicale mit der Ringgliederzahl n=5, 4, 3, 2 zusammengestellt. Leider ist die Analyse der Spektren von Ringen mit n>2 noch wenig weit vorgeschritten; wir können daher von dem in Fig. 5 graphisch dargestellten Ergebnis derzeit nicht mehr zur Diskussion heranziehen als die gut bekannten CH-Valenz- und die Ringpulsationsfrequenzen.

²⁷ K. W. F. KOHLBAUSCH, A. W. REITZ und W. STOCKMAIR, Z. physik. Chem. **32** (1936) 229.

a) Die Festigkeit der CH-Bindungen in cyclischen Kohlenwasserstoffen.

Ein Blick auf die Fig. 5 zeigt, daß sich das strichliert eingegrenzte Frequenzgebiet der CH-Valenzschwingungen mit zu-

Fig. 5. Spektren der Radicale C5H9 bis C2H3.

nehmender Ringverengung nach höheren Werten verschiebt. Die Zahlenwerte für den Drei- und Zwei-Ring ermitteln wir wieder aus solchen Derivaten, deren Substituent keine CH-Bindung enthält. Es ergibt sich:

In $C_3H_5 \cdot CO \cdot OH$, $C_3H_5 \cdot CO \cdot Cl$.	2960 (1?) 2956 (1?)	3015 (10 <i>b</i>) 3021 (8)	3065 (4) 3091 3052 (¹ / ₂) 3094	$\begin{array}{ll} (5) & 3105 (4) \\ (4) & 3112 (5) \end{array}$
Im Mittel für C_3H_5	. 2958 (1)	3018 (9 b)	3058 (3) 3092	(5) 3109 (5)
$\begin{array}{ccc} \text{In} \ C_2H_3 \boldsymbol{\cdot} \text{CO} \boldsymbol{\cdot} \text{OH} \\ , \ C_2H_3 \boldsymbol{\cdot} \text{CO} \boldsymbol{\cdot} \text{Cl} \end{array} .$	2996 (1) 2982 (1)	3028 (2 b 3031 (6)) 3112 (5) 3116 (3)	
Im Mittel für C_2H_3	2989(1)	3030(4)	3114 (4)	

In Tabelle 4 sind diese Mittelwerte mit den an den analogen Cyclopentan- und Cyclobutan-Derivaten in Mitteilung LXIV gewonnenen zusammengestellt. Die Zahlen zeigen, daß sich die CH-Frequenzen beim Übergang vom Fünf- zum Zwei-Ring um rund $150 \, cm^{-1}$ nach höheren Werten verschieben.

Es fragt sich nun, wieviel von dieser Erhöhung auf den Umstand zurückzuführen ist, daß die CH-Schwingungen mit den Ringschwingungen gekoppelt sind und letztere durch die bei der Ringverengung eintretende Änderung der geometrischen Verhältnisse nach höheren Werten verschoben werden. Wir haben

Tabelle 4.

in C ₅ H ₉		2874 (7)	2922 (6)	2966 (11b)
" C ₄ H ₇	2868 (3)	2921 (7)	2952 (11)	2983 (10b)
"C ₃ H ₅	2958(1)	3018 (9)	3058 (2)	3092 (5) 3109 (5)
" C ₂ H ₃	2989 (1)	3030 (4)		3114 (4)

die aus diesem Grund zu erwartende Erhöhung für die totalsymmetrische Schwingung mit Hilfe der seinerzeit ¹⁰ angegebenen, für ein Valenzkraftsystem giltigen Näherungsformeln überschlagsweise berechnet und für den Übergang $C_5H_9 \rightarrow C_2H_3$ eine Erhöhung um 08%, d. i. eine Verschiebung von 2874 nach 2897 erhalten, während eine solche von 2874 nach 3030 beobachtet wurde. Es ist also nur ein Bruchteil der tatsächlich bei zunehmender Ringspannung eintretenden allmählichen Frequenzerhöhung erklärbar, wenn die CH-Federkraft als unverändert angenommen wird. Um die ganze Verschiebung zu erklären, muß man speziell für den Übergang von Cyclopentan zum Athylen eine Zunahme der CH-Federkraft um 9—10% ansetzen. Auch die viel genaueren Rechnungen von BONNER, DELFOSSE, MANNEBACK führen zu einem ähnlichen Ergebnis bezüglich der Kraftkonstanten der Athylen-CH-Bindung.

b) Die Festigkeit der C.-C-Bindung im Ring.

Hier, wo es sich um die C·C-Bindung selbst handelt, darf man Äthylen mit seiner grundsätzlich anders gebauten C:C-Doppelbindung nicht mehr in den Vergleich mit einbeziehen. Die totalsymmetrische Pulsationsschwingung bei der die Ringwinkel erhalten bleiben, hängt in einem Valenzkraftsystem *nur* von der in den C·C-Bindungen wirkenden Federkraft F ab; vernächlässigt man die Koppelung zwischen Ring- und CH-Schwingung und bezeichnet man die schwingenden Massen mit M, den Winkel 180/n mit γ , dann gilt:

$$\omega \sim 2 \sin \gamma / \frac{F}{M}$$
.

Bezieht man die Rechnung auf den Wert 886, den die Frequenz der Pulsationsschwingung im Fünf-Ring aufweist, dann ergibt sich nach dieser Näherungsrechnung:

Ringgliederzahl $n =$	5	4	3
Erwartet $\omega =$	(886)	1066	1305
Beobachtet ω==	886	960	1184

Das heißt, die Pulsationsfrequenz bleibt umso mehr hinter dem Erwartungswert zurück, je geringer die Gliederzahl des Ringes ist.

Es fragt sich nun wieder, ob dieses Zurückbleiben auf eine Abnahme der Federkraft F oder darauf zurückzuführen ist, daß bei der Berechnung der Erwartung irgend welche Umstände, die dieses Zurückbleiben auch ohne Änderung von F rechtfertigen würden, nicht berücksichtigt wurden. In der Tat ist die Vernachlässigung der Koppelung zwischen Ring- und CH-Deformationsschwingung ein solcher Umstand; berücksichtigt man diese Koppelung, so erhält man tiefere Erwartungswerte, wenn auch nicht so tiefe, als der Beobachtung entsprechen. Andererseits aber ist zu berücksichtigen, daß es sich nach allen sonstigen Erfahrungen nicht um reine Valenzkraftsysteme handelt. Das zur Gruppe der totalsymmetrischen Bewegungen (1 Ring-, 1 CH-Deformations-, 1 CH-Valenzschwingung) gehörige Potential enthält dann aber außer den im Potentialansatz für ein Valenzkraftsystem vorhandenen Gliedern noch andere. Dies muß zur Folge haben, daß die Erwartungswerte vergrößert werden; die Differenz zwischen Erwartung und Beobachtung nimmt wieder zu und erfordert, um Übereinstimmung zu erhalten, Verkleinerung von F.

Solange die Ringspektren nicht restlos bekannt und analysiert sind, ist es nicht möglich eine bessere theoretische Näherung zur Ableitung von Erwartungswerten zu verwenden.

Wir müssen uns daher damit begnügen festzustellen: Derzeit hat es den Anschein, als ob mit zunehmender Ringverengung bzw. Ringspannung die Federkraft zwischen den C-Atomen der wahren Ringe (der Zweier-"Ring" ist nicht einzubeziehen) abnimmt.

4. Das Spektrum der Esterkette in tertiären Butylestern.

Für die Orientierung im Spektrum von Säureestern ist es oft von großem Nutzen, die meist sehr lagenkonstanten Frequenzen der Esterkette zu kennen. H. C. CHENG² hat diesbezügliche Angaben für die Ketten der Methyl-, Äthyl-, n-Propyl-, i-Propyl-, n-Butylester abgeleitet. Tertiäre Butylester wurden hingegen bisher von den Spektroskopikern überhaupt nicht untersucht und sind auch in der chemischen Literatur nicht allzuhäufig anzutreffen. In Fig. 6 stellen wir die bisherigen Beobachtungen an solchen Estern zusammen, leiten aus den lagenkonstanten Linien einerseits, aus der Kenntnis der zur Kette $R \cdot CO$ gehörigen Linien andererseits das zur Esterkette $OC(CH_3)_3$ gehörige Spektrum ab (vorletzte Zeile) und vergleichen dieses mit dem Spektrum des tertiären Butylalkoholes $HO \cdot C(CH_3)_3$ (unterste Zeile).

Der Vergleich der beiden letzten Zeilen zeigt, daß auch hier der Typus des Alkoholspektrums im Spektrum der Esterkette wiederzufinden ist. Der größte Teil der bestehenden Unterschiede wird ohneweiters verständlich, wenn man sich daran erinnert, daß die im Alkoholspektrum depolarisierten ²⁸ Linien zu den entarteten Schwingungen ²⁹ eines tetraedrischen Systemes YZX₃ (Symmetrie C_{3v}) gehören, die bei weiterer Symmetriestörung (Ersatz von H in OH·C(CH₃)₃ durch R·CO) aufspalten können.

Auch die CHENGschen Angaben bezüglich des Einflusses der Verzweigung der Esterkette auf die Höhe der CO-Frequenz

Fig. 6. Spektrum von tertiären Butylestern.

lassen sich nun vervollständigen. Die folgenden Zahlen zeigen den Gang der CO-Frequenz, das einemal, wenn der *Alkylrest* der Säure in α - bzw. β -Stellung verzweigt wird und das anderemal, wenn die Verzweigung in der *Esterkette* in β -Stellung erfolgt.

 I.
 II.
 III.

 $H_3C \cdot CO \cdot OR$ 1736
 $H_3C \cdot H_2C \cdot CO \cdot OR$ 1733
 $R \cdot CO \cdot OCH_3$ 1726

 $H_3C \cdot H_2C \cdot CO \cdot OR$ 1731
 $H_3C \cdot H_2C \cdot CO \cdot OR$ 1732
 $R \cdot CO \cdot OCH_2 \cdot CH_3$ 1723

 $(H_3C)_2HC \cdot CO \cdot OR$ 1729
 $(H_3C)_2HC \cdot H_2C \cdot CO \cdot OR 1731$ $R \cdot CO \cdot OCH(CH_3)_2$ 1720

 $(H_3C)_4C \cdot CO \cdot OR$ 1728
 fehlt
 $R \cdot CO \cdot OC(CH_3)_3$ 1718

Der Vergleich des Ganges der CO-Frequenz in den Reihen I, II, III zeigt: Die in I bemerkbare Erniedrigung der CO-Frequenz bei Verzweigung in «-Stellung verschwindet fast völlig.

392

²⁸ B. TRUMPY, Z. Physik **98** (1936) 672.

²⁹ Bezüglich der Bezeichnung und der Schwingungsformen vgl. K. W. F. KOHLRAUSCH, Z. physik. Chem. (B) 28 (1935) 340, Fig. 2.

wenn eine Methylengruppe zwischen die Verzweigungsstelle und die CO-Gruppe eingeschoben, wenn also in β -Stellung verzweigt wird. Das Einschieben eines O-Atomes zwischen CO-Gruppe und Verzweigungsstelle verhindert dagegen die Wirkung der Verzweigung nicht. Es bestätigt sich der Satz: Dem Sauerstoffatom kommt die abschirmende Wirkung, den die Methylengruppe besitzt, nicht zu.

Anhang.

1. Isobuttersäure-n-propylester, $(H_3C)_2HC \cdot CO \cdot OC_3H_7$. Herstellung durch Veresterung der Säure. Sdp.₇₂₁ 134'0-135'4'; Sdp.₇₆₀ 135'8-137'2' (Lit. 142'7'). $n_d^{19'8} =$ 1'3969. Bisherige Beobachtung: keine. Pl.-Nr. 2155, m. F., t=14; Pl. 2156, o. F., t=12; Ugd. s., Sp. st., n=42.

 $\begin{array}{l} \Delta v = 291 \; (3 \; b) \; (e); \; 351 \; (0) \; (e); \; 436 \; (1) \; (e, \; c); \; 515 \; (^{1}/_{2}) \; (e, \; c); \; 600 \; (0) \; (e, \; c); \\ 816 \; (2) \; (k, \; e); \; 882 \; (3) \; (k, \; e); \; 960 \; (2) \; (k, \; e); \; 1036 \; (2) \; (k, \; e); \; 1104 \; (1) \; (k, \; e); \; 1199 \; (0) \\ (k, \; e); \; 1288 \; (2) \; (k, \; e); \; 1314 \; (2) \; (e); \; 1346 \; (2) \; (k, \; e); \; 1452 \; (5 \; sb) \; (k, \; f, \; e); \; 1726 \pm 3^{1}/_{2} \\ (2 \; b) \; (e); \; 2873 \; (6 \; b) \; (k, \; e); \; 2910 \; (6) \; (q, \; k, \; e); \; 2933 \; (12) \; (q, \; k, \; e); \; 2975 \; (8b) \; (q, \; p, \; o, \; k, \; e). \end{array}$

2. Isobuttersäure-i-propylester, $(H_sC)_2HC \cdot CO \cdot OCH(CH_3)_2$. Herstellung aus dem Säurechlorid durch halbstündiges Sieden mit Isopropyl-alkohol. Übliche Reinigung, zweimalige Destillation. Sdp.₇₈₁ 118'0-119'5', Sdp.₇₆₀ 119'2-120'7' (Lit. 128'). $n_d^{19'9}$ =1'3866. Bisherige Beobachtung: keine. Pl.-Nr. 2166, m. F., t=18; Pl. 2167, o. F., t=12; Ugd. s. s., Sp. m., n=53.

 $\begin{array}{l} \Delta v = 151 \; (3) \; (e^{2}); \; 280 \; (3) \; (\pm e); \; 453 \; (3) \; (k, e, c); \; 505 \; (^{1}/_{2}) \; (k, e); \; 529 \; (^{1}/_{2}) \; (e, c); \\ 597 \; (1) \; (k, e); \; \; 648 \; (^{1}/_{2}) \; (e); \; \; 818 \; (3) \; (k, e); \; \; 846 \; (5) \; (k, i, g, e, c); \; 898 \; (4) \; (k, e); \; 940 \; (2) \\ (k, e); \; \; 1106 \; (3) \; (k, i, f, e); \; \; 1144 \; (^{1}/_{2}) \; (k, e); \; \; 1184 \; (^{1}/_{2}) \; (k, e); \; \; 1334 \; (1 \; b) \; (k, e); \; \; 1381 \\ (^{1}/_{2}) \; (e); \; \; 1454 \; (5 \; b) \; (k, e); \; \; 1725 \; \pm 5^{1}/_{2} \; (2 \; b) \; (e); \; \; 2728 \; (2) \; (k); \; \; 2764 \; (00) \; (k); \; \; 2874 \; (5) \\ (k, i, e); \; \; 2918 \; (10b) \; (g, k, i, e); \; \; 2943 \; (10) \; (g, k); \; \; 2979 \; (10\; b) \; (g, p, o, k, i, e). \end{array}$

3. Isobuttersäure-tertiär-butylester, $(H_3C)_2HC \cdot CO \cdot OC(CH_3)_3$. Darstellung aus den Säurechlorid analog den anderen tertiären Butylestern (vgl. z. B. Nr. 9 und 16). Vor der Aufnahme zweimalige Fraktionierung. Sdp.₃₂ 39'5', Sdp.₇₆₀ 126'7' (Lit. Unbekannt). $n_d^{20'1}$ =1'3921. Bisherige Beobachtung: keine. Pl-Nr. 2247, m. F., t=18; Ugd. s., Sp. st.; Pl. 2248, o. F., t=12; Ugd. st., Sp. sst.; n=60.

 $\begin{array}{l} \Delta v = 157 \ (2\,?) \ (e); \ 248 \ (3) \ (\pm e); \ 298 \ (3) \ (e); \ 330 \ (2) \ (e); \ 390 \ (^{1}_{2}) \ (e); \ 425 \ (^{1}_{2}) \ (k, e, c); \ 503 \ (3) \ (k, e, c); \ 594 \ (2) \ (k, e, c); \ 656 \ (1) \ (k, e); \ 751 \ (5b) \ (k, f, e, c); \ 850 \ (6) \ (k, f, e, c); \ 922 \ (3) \ (k, e); \ 964 \ (1) \ (k, e); \ 1037 \ (1) \ (k, e); \ 1102 \ (3) \ (k, e); \ 1174 \ (1) \ (k, e); \ 1216 \ (^{1}_{2}) \ (k, e); \ 1253 \ (2) \ (k, e); \ 1302 \ (1) \ (k, e); \ 1365 \ (^{1}_{2}\,^{2}) \ (e); \ 1455 \ (6b) \ (k, e); \ 1722 \pm 5^{1}_{2} \ (3b) \ (e); \ 2729 \ (2\,?) \ (k); \ 2875 \ (5) \ (k, i, e); \ 2930 \ (12\,b) \ (q, k, i, e); \ 2977 \ (10) \ (q, p, o, k, i, e); \ 3006 \ (6) \ (q, k). \end{array}$

4. Acrylsäure, H₂C:CH·CO·OH. Herstellung aus β -Chlorpropionsäure (Chem. Zentralbl. 1921, III. 820). Vor der Aufnahme zweimalige Vakuumdestillation. Sdp.₁₁ 39⁵5-40²⁰ (Lit. Sdp.₁₄ 48⁵5⁰). Brechungsexponent wegen Trübung nicht bestimmt. Bisherige Beobachtung: BOURGUEL-PIAUX ³⁰. Pl.-Nr. 2135, m. F., t=14; Pl. 2136, o. F., Sp. 0⁰04, t=20; Ugd. m., Sp. st.; n=40.

 $\begin{array}{l} \Delta v = 308 \ (2 \ b) \ (k, \ e); \ 340 \ (1) \ (k, \ e); \ 502 \ (2 \ b) \ (k, \ e, \ c); \ 629 \ (1) \ (k, \ e); \ 706 \ (0) \\ (e); \ 813 \ (1) \ (e); \ 861 \ (4) \ (k, \ e); \ 980 \ (2 \ b) \ (k, \ e); \ 1042 \ (^{1}_{/_{2}}) \ (k, \ e); \ 1068 \ (2 \ b) \ (k, \ e); \ 1104 \end{array}$

³⁰ M. BOURGUEL und L. PIAUX, Bull. Soc. chim. France 2 (1935) 1958. Monatshefte für Chemie, Band 70 28 Bezüglich der Hauptlinien ober $800 \ cm^{-1}$ herrscht gute Übereinstimmung mit den Angaben der französischen Autoren. Gegen Ende unserer Aufnahme o. F. scheint spurenweise Polymerisierung eingetreten zu sein. Die Frequenz 3028 ist wegen Überdeckung mit anderen Linien weniger sicher.

5. Acrylsäure-methylester, $H_2C:CH \cdot CO \cdot OCH_3$. Die Darstellung dieses und der anderen Ester mit Ausnahme des Tertiärbutylesters erfolgte durch Abspaltung von HCl (mittels Dimethylanilin) aus den entsprechenden β -Chlorpropionsäureestern (A. 470, 298), die selbst, wie üblich, aus der Säure und dem entsprechenden Alkohol mit HCl erhalten wurden. Vor der Aufnahme wurden die Ester mehrmals destilliert, *n*- und *i*-Propylester im Vakuum. Die Siedepunktsangaben für Normaldruck haben, da Polymerisation eintrat, nur bedingten Wert.

Für den Methylester wurde gefunden: $\mathrm{Sdp}_{.741}$ 78–79°; $\mathrm{Sdp}_{.760}$ 787–797° (Lit. $\mathrm{Sdp}_{.761}$ 80'5); $n_d^{19^\circ2}$ =1'4022 (Lit. n_d^{18} =1'4117). Aufnahme auf Pl. 2160, m. F., t=12, Ugd. s., Sp. st. Ferner stand ein Präparat der I. G.-Farben-Industrie zur Verfügung, das bei 78'2–80'8° siedete; es wurde zweimal aufgenommen. Pl.-Nr. 1907, m. F., t=16; Pl. 1908, o. F., Sp. 0'04, t=20; Ugd. s., Sp. st. – Diese 3 Aufnahmen wurden mit der seinerzeit³ auf Pl. 1329, m. F., erhaltenen vereinigt und aus n=52 Streulinien das folgende Ramanspektrum abgeleitet :

$$\begin{split} &\Delta \mathbf{v} = 231 \; (4) \; (e, c); \; 350 \; (3) \; (e, c); \; 469 \; (4) \; (e, c); \; 521 \; (2) \; (k, e, c); \; 620 \; (1) \; (e, c); \\ &659 \; (\frac{1}{2}) \; (e\,?); \; 807 \; (1) \; (k, e); \; 854 \; (8) \; (k, i, e, c); \; 969 \; (3) \; (k, e); \; 993 \; (2) \; (k, e); \; 1065 \; (3) \\ &(k, e); \; 1182 \; (2) \; (k, e); \; 1207 \; (2 \; b) \; (k, e); \; 1283 \; (4 \; b) \; (k, e); \; 1400 \; (6) \; (k, e); \; 1444 \; (3 \; b) \; (k, e); \\ &1632 \; (10) \; (k, g, f, e); \; 1722 \pm 7 \; (8) \; (e); \; 2853 \; (2) \; (k); \; 2954 \; (10) \; (q, k, e); \; 2992 \; (4) \; (q, k, e); \\ &3036 \; (9) \; (q, \; k); \; 3066 \; (3) \; (q, \; k); \; 3104 \; (4) \; (q, \; p, \; k). \end{split}$$

6. Acrylsäure-äthylester, $H_2C:CH \cdot CO \cdot OC_2H_5$. Darstellung wie oben. Sdp.₇₃₈ 98'6-99'2'; Sdp.₇₆₀ 99'5-100'1' (Lit. Sdp.₇₆₁ \$9'8'); $n_d^{19'4}$ =1'4059 (Lit. n_d^{18} =1'4072). Bisherige Beobachtung: keine. Pl.-Nr. 2159, m. F., t=10; Ugd. s. s., Sp. m.; n=27.

 $\begin{array}{l} \Delta v = 163 \ (2 \ b) \ (\pm \ e); \ 317 \ (1) \ (e); \ 368 \ (2 \ b) \ (e, \ c); \ 426 \ (00) \ (e^{2}); \ 475 \ (0) \ (e); \\ 518 \ (0) \ (e, \ c); \ 572 \ (00) \ (e); \ 788 \ (0) \ (e); \ 860 \ (3) \ (e, \ c); \ 902 \ (00) \ (e); \ 963 \ (^{1}_{2}) \ (e); \ 1025 \\ (1) \ (e); \ 1061 \ (2) \ (e); \ 1110 \ (2) \ (e); \ 1194 \ (2) \ (e); \ 1285 \ (3 \ b) \ (e); \ 1405 \ (3) \ (e); \ 1449 \ (2) \\ (e); \ 1635 \ (7) \ (f, \ e); \ 1718 \pm 9^{1/2} \ (4) \ (e); \ 2933 \ (00) \ (e); \ 2982 \ (00) \ (e). \end{array}$

7. Acrylsäure-n-propylester, $H_2C:CH\cdot CO\cdot OC_3H_7$. Darstellung wie oben. Sdp.₅₅ 51'4°; Sdp.₇₆₀ ~ 119° (Lit.: Sdp. unbekannt). $n_d^{19'4}$ = 1'4131 (nach d. Belichtung). Bisherige Beobachtung: keine. Pl.-Nr. 2178, m. F., t=12; Pl.-Nr. 2179, o. F., t=8. Bei Aufnahme o. F. sehr starker Ugd. und beginnende Polymerisation. n = 44.

 $\begin{array}{l} \Delta v = 331 \ (1) \ (e); \ 418 \ ({}^{1}_{/_{2}}) \ (e, \ c); \ 511 \ (0) \ (e, \ c); \ 605 \ (1) \ (e, \ c); \ 834 \ ({}^{1}_{/_{2}}) \ (e); \ 896 \ (2) \ (k, \ e); \ 961 \ (2) \ (e); \ 1035 \ (2) \ (k, \ e); \ 1063 \ (2) \ (k, \ e); \ 1137 \ (0) \ (e); \ 1190 \ (2) \ (k, \ e); \ 1279 \ (4b) \ (k, \ e); \ 1339 \ (00) \ (e); \ 1405 \ (4) \ (e); \ 1447 \ (3) \ (e); \ 1635 \ (7) \ (e); \ 1720 \pm 8 \ (4) \ (e); \ 2729 \ ({}^{1}_{/_{2}}) \ (p\ ?); \ 2875 \ (4) \ (k, \ e); \ 2939 \ (6) \ (q, \ p, \ k, \ e); \ 2978 \ (2) \ (q, \ e); \ 3039 \ (2) \ (q, \ p, \ k); \ 3107 \ (2) \ (q, \ p, \ o, \ k). \end{array}$

8. Acrylsäure-i-propylester, H₂C:CH·CO·OCH(CH₃)₃. Darstellung wie oben. Sdp.₁₀₀53^o; Sdp.₇₄₀110^o0 (Lit. Sdp. unbekannt). n_d^{18^o3}=1[•]4072. Bisherige Beobachtung: keine. Pl-Nr. 2174, m. F., t=12; Pl. 2175, o. F., t= $7^{1/2}$; Ugd. m., Sp. st., n=69.

 $\begin{array}{l} \Delta v = 165 \ (4) \ (e); \ 331 \ (4) \ (f, \ \pm e, \ c); \ 443 \ (3) \ (e, \ c); \ 533 \ (1) \ (e, \ c); \ 602 \ (1) \\ (e, \ c); \ 827 \ (5) \ (k, \ i, \ f, \ e, \ c); \ 880 \ (2) \ (k, \ e); \ 940 \ (3) \ (k, \ e); \ 962 \ (^{1}_{2}) \ (k, \ e); \ 1060 \ (2) \\ (k, \ e); \ 1104 \ (1) \ (k, \ e); \ (1146 \ (2) \ (k, \ e); \ 1176 \ (^{1}_{2}) \ (e); \ 1201 \ (2) \ (k, \ e); \ 1276 \ (3) \ (k, \ e); \ 1295 \\ (3) \ (k, \ e); \ 1342 \ (2) \ (k, \ e); \ 1407 \ (5) \ (k, \ i, \ e); \ 1454 \ (3b) \ (k, \ e); \ 1615 \ (1) \ (e^{2}); \ 1638 \\ (7) \ (k, \ e); \ 1717 \pm 7 \ (4b) \ (e); \ 2731 \ (2) \ (p, \ o, \ k); \ 2873 \ (3) \ (k, \ e); \ 2920 \ (3) \ (q, \ k); \ 2939 \\ (8) \ (q, \ k, \ e); \ 2934 \ (8b) \ (q, \ p, \ k, \ i, \ e); \ 3039 \ (2) \ (q, \ p, \ o, \ k); \ 3107 \ (2) \ (q, \ p, \ o, \ k). \end{array}$

9. Acrylsäure-tert.-butylester, $H_2C:CH\cdot CO\cdot OC(CH_3)_3$. Darstellung: 0'3 Mol β -Chlorpropionsäurechlorid wurden zu einem Gemisch von 0'4 Mol Tert. Butylalkohol und 0'8 Mol Dimethylanilin bei etwa 60° zutropfen gelassen, und dann 1/2 Stunde auf 150° erwärmt. Der Acrylsäureester wurde im Vakuum bei 60° abdestiliert und noch zweimal im Vakuum fraktioniert. Sdp.₂₆ 30'0-30'8° (Lit. Sdp. unbekannt). $n_d^{19'4}$ =1'4074. Bisherige Beobachtung: keine. Pl.-Nr. 2206, m. F., t=12; Pl. 2207, o. F., t=8; Ugd. s. s., Sp. m.; n=54.

 $\begin{array}{l} \Delta \mathbf{v} = 154 \ (3) \ (e, +b); \ 245 \ (00) \ (e); \ 323 \ (2) \ (k, e); \ 344 \ (2) \ (k, e, e); \ 501 \ (^{1}_{/2}) \\ (e, c); \ 600 \ (^{1}_{/2}) \ (e, c); \ 752 \ (4) \ (k, f, e, c); \ 806 \ (00) \ (e); \ 843 \ (2) \ (k, e); \ 916 \ (2b) \ (k, e); \\ 959 \ (^{1}_{/2}) \ (e); \ 1027 \ (0) \ (k, e); \ 1216 \ (1) \ (k, e); \ 1264 \ (0) \ (k, e); \ 1293 \ (1) \ (k, i, e); \ 1400 \ (3) \\ (k, e); \ 1450 \ (3) \ (k, e); \ 1634 \ (4) \ (k, f, e); \ 1714 \pm 6^{1}_{/2} \ (2) \ (e); \ 2826 \ (00) \ (k); \ 2882 \ (2) \\ (k, e); \ 2902 \ (3) \ (k); \ 2932 \ (6) \ (q, k, e); \ 2980 \ (5) \ (q, k, e); \ 3034 \ (2) \ (q, p, k); \ 3102 \ (2) \\ (q, p, k). \end{array}$

10. Acrylsäure-chlorid, H₂C:CH·CO·Cl. Darstellung aus acrylsaurem Na und POCl₃ [A. ch. (7) 2,161]. Zur Aufnahme wurde unter Feuchtigkeitsausschluß direkt in das Ramanrohr destilliert. Sdp.₇₂₂ 71'8-72'2', Sdp.₇₆₀ 73'2-73'6' (Lit. Sdp._?=75-76'). Bisherige Beobachtung: keine. Pl.-Nr. 2158, m. F., Sp. 0'04, t=19; Pl. 2229, m. F., Sp. 0'04, t=9; Pl. 2230, o. F., Sp. 0'06, t=7; Ugd. s. bis m., Sp. s. st., n=43. Auch auf der unterbelichteten Platte Nr. 2229 ist die CO-Frequenz *nicht* doppelt.

 $\begin{array}{l} \Delta \nu = 181 \ (1) \ (e); \ 261 \ (4) \ (k, \pm e, +a); \ 377 \ (2) \ (e, c); \ 435 \ (8b) \ (k, \ g, \ \pm e, c); \\ 489 \ (2) \ (e); \ 605 \ (5) \ (k, \ e, \ c); \ 700 \ (3) \ (k, \ i, \ e); \ 980 \ (2) \ (k, \ e); \ 1072 \ (1) \ (k, \ e); \ 1142 \\ (2) \ (k, \ e); \ 1282 \ (6) \ (k, \ e); \ 1392 \ (6) \ (k, \ e); \ 1609 \ (10) \ (k, \ i, \ e); \ 1752 \pm 8 \ (9b) \ (e); \ 2982 \\ (1) \ (g, \ k, \ e); \ 3031 \ (6) \ (g, \ p, \ k, \ i); \ 3116 \ (3) \ (g, \ o, \ k). \end{array}$

11. Cyclopropan-carbonsäure, $C_3H_5 \cdot CO \cdot OH$. Darstellung aus Cyclopropylcyanid (vgl. Mitteilung LXXII) durch fünfstündiges Kochen mit 20% iger wässeriger KOH. Zweimalige Destillation. Sdp.₁₂ 77'4°; Sdp.₇₆₀ 180–183° unter teilweiser Polymerisierung. (Lit. 182–184°). $n_d^{18'1} = 1'4383$. Bisherige Beobachtung: keine. Pl.-Nr. 2223, m. F., Sp. 0'06, t=14; Pl. 2224, o. F., Sp. 0'04, t=20; Ugd. s. bis m., Sp. st.; n=58.

 $\begin{array}{l} \Delta v = 170 \ (1?) \ (e); \ 276 \ (3) \ (k, \pm e); \ 306 \ (0) \ (e); \ 463 \ (4) \ (f, e, c); \ 504 \ (2) \\ (k, e, c); \ 635 \ (1) \ (k, e); \ 773 \ (4) \ (k, f, e, c); \ 824 \ (7 \ b) \ (k, i, e, c); \ 898 \ (3) \ (k, e); \ 935 \\ (5) \ (k, i, e); \ 1031 \ (4) \ (k, i, f, e); \ 1101 \ (2) \ (k, i, e); \ 1190 \ (8) \ (k, i, f, e); \ 1362 \ (3 \ b) \ (k, e); \\ 1430 \ (4 \ b) \ (k, e); \ 1455 \ (3) \ (k, e); \ 1645 \pm 9^{1/2} \ (3 \ b) \ (e); \ 2960 \ (1?) \ (q, 2, k^{2}, e^{2}); \ 3015 \\ (10 \ b) \ (q, k, i, e); \ 3065 \ (4) \ (k); \ 3091 \ (5) \ (q, p, o, \ k, i, e); \ 3105 \ (4) \ (q, p, k). \end{array}$

12. Cyclopropan-carbonsäure-methylester, $C_3H_5 \cdot CO \cdot OCH_3$. Dieser und die anderen Ester — abgesehen vom tert. Butylester — wurden auf die übliche Weise durch Veresterung der Säure mit konz. Schwefelsäure dargestellt. Vor der Aufnahme wurde jeweils mehrmals destilliert. Sdp.₇₂₆ = 113'2-113'5', Sdp.₇₆₀ 114'6 bis 114'9' (Lit. Sdp.₇₆₄ = 119'). $n_d^{20'1}$ = 1'4181 (Lit. $n_d^{19'1}$ = 1'4144). Bisherige Beobachtung: keine. Pl.-Nr. 2225, m. F., t=14; Pl. 2226, o. F., t=9; Ugd. s., Sp. st.; n=53.

 $\begin{array}{l} \Delta v = 205 \; (0) \; (e); \; 282 \; (^{1}/_{2}) \; (e); \; 332 \; (0) \; (e); \; 424 \; (5) \; (k, \, i, \, f, \, \pm e, \, c); \; 476 \; (^{1}/_{2}) \\ (k, \, e); \; 600 \; (00) \; (e, \, c); \; 649 \; (0) \; (e); \; 783 \; (1) \; (k, \, f, \, e); \; 824 \; (5) \; (k, \, e, \, c); \; 840 \; (5) \; (k, \, e); \\ 900 \; (4) \; (k, \, i, \, e); \; 1005 \; (3) \; (k, \, e); \; 1033 \; (1) \; (k, \, e); \; 1096 \; (0) \; (k, \, e); \; 1191 \; (6) \; (k, \, f, \, e); \\ 1382 \; (3) \; (k, \, e); \; 1426 \; (1) \; (k, \, e); \; 1451 \; (4 \; b) \; (k, \, e); \; 1723 \pm 7 \; (3 \; b) \; (e); \; 2742 \; (^{1}/_{2}) \; (e); \\ 2854 \; (2) \; (k, \, e); \; 2954 \; (4 \; b) \; (q, \, p, \, k, \, e); \; 3016 \; (9 \; b) \; (q, \; k, \; e); \; 3061 \; (3) \; (k); \; 3090 \; (5 \; b) \\ (k, \; e); \; 3106 \; (2 \; b) \; (q, \; o). \end{array}$

13. Cyclopropan-carbonsäure-äthylester, $C_3H_5 \cdot CO \cdot OC_2H_5$. Darstellung siehe Methylester. Sdp.₇₁₉ 130[.]8 – 131[.]2^o; Sdp.₇₆₀ 132[.]6 – 133[.]0^o (Lit. Sdp.₇₄₅ 134^o). $n_d^{17.9} = 1.4203$ (Lit. $n_d^{15} = 1.4217$). Bisherige Beobachtung: keine. Zweimal dargestellt und viermal aufgenommen. Pl.-Nr. 2122, m. F., t=14; Pl. 2123, o. F., t=9; Pl. 2227, m. F., t=14; Pl. 2228, o. F., t=9. Ugd. s. bis m., Sp. st.; n=65.

 $\begin{array}{l} \Delta v = 276 \; (3\;b)\; (\pm e); \;\; 359\; (5)\; (\pm e,\;c); \;\; 433\; (0)\; (e); \;\; 479\; (2)\; (k,\;i,\;e,\;c); \;\; 602\; (^1/_2)\; \\ (k,\;e,\;c);\;\; 669\; (0)\; (e);\;\; 737\; (0)\; (e);\;\; 778\; (2)\; (k,\;e);\;\; 823\; (4)\; (k,\;e,\;c);\;\; 862\; (4)\; (k,\;e);\;\; 898\; \\ (2)\; (k,\;e);\;\; 944\; (3)\; (k,\;e);\;\; 1030\; (5\;b)\; (k,\;e);\;\; 1102\; (3)\; (k,\;i,\;e);\;\; 1122\; (3)\; (k,\;e);\;\; 1196\; \\ (8b)\; (k,\;i,\;e);\;\; 1269\; (0)\; (k,\;e);\;\; 1348\; (0)\; (k,\;e);\;\; 1452\; (6\;b)\; (k,\;f,\;e);\;\; 1719\pm7^1/_2\; (4\;b)\; (e);\; \\ 2870\; (1)\; (p,\;k,\;e);\;\; 2933\; (6)\; (q,\;k,\;e);\;\; 2974\; (2\;b)\; (q,\;k,\;e);\;\; 3015\; (9)\; (p,\;k,\;e);\;\; 3063\; (4)\; \\ (k);\; 3091\; (6)\; (q,\;o,\;k,\;i,\;e);\;\; 3114\; (1)\; (q,\;k). \end{array}$

14. Cyclopropan-carbonsäure-n-propylester, $C_3H_5 \cdot CO \cdot OC_3H_7$. Darstellung: siehe Methylester. Sdp.₇₂₀ 151'8—152'2°; Sdp.₇₆₀ 153'7—154'1° (Lit. Unbekannt). n^{20'1}_d=1'4239 (Lit. Unbekannt). Bisherige Beobachtung: keine. Pl.-Nr. 2240, m. F., t=14; Pl. 2241, o. F., t=9; Ugd. s., Sp. st., n=64.

 $\begin{array}{l} \Delta v = 160 \ (2) \ (\pm e); \ 218 \ (^{1}_{2}) \ (e); \ 300 \ (3) \ (\pm e); \ 349 \ (2) \ (e); \ 395 \ (2) \ (e, \ c); \ 497 \\ (1) \ (k, \ e, \ c); \ 600 \ (0) \ (e, \ c); \ 654 \ (0) \ (k, \ e); \ 747 \ (^{1}_{2}) \ (k, \ e, \ c); \ 784 \ (2) \ (k, \ e); \ 820 \ (6b) \\ (k, \ e); \ 836 \ (5b) \ (k, \ e); \ 896 \ (5b) \ (k, \ e); \ 972 \ (4) \ (k, \ e); \ 1032 \ (3) \ (k, \ e); \ 1098 \ (3) \ (k, \ e); \\ 1194 \ (6) \ (k, \ e); \ 1240 \ (2) \ (k, \ e); \ 1286 \ (^{1}_{2}) \ (k, \ e); \ 1451 \ (6b) \ (k, \ f, \ e); \ 1719 \pm 6 \ (4b) \\ (e); \ 2760 \ (^{1}_{2}) \ (k); \ 2864 \ (2?) \ (k); \ 2880 \ (6) \ (p, \ k, \ e); \ 2935 \ (8) \ (q, \ p, \ k, \ e); \ 2958 \ (2) \\ (k, \ e); \ 3013 \ (5) \ (q, \ k, \ c); \ 3062 \ (3) \ (k); \ 3085 \ (5) \ (q, \ p, \ k, \ e); \ 3107 \ (1?) \ (q). \end{array}$

15. Cyclopropan-carbonsäure-i-propylester, $C_3B_5 \cdot CO \cdot OCH(CH_3)_2$. Darstellung: siehe Methylester. $Sdp_{.718}$ 139'6--140'4°. $Sdp_{.760}$ 141'5--142'3° (Lit. Unbekannt). $n_d^{20'4}$ --1'4186. Bisherige Beobachtung: keine. Pl.-Nr. 2235, m. F., t=-14; Pl. 2236, o. F., t=9; Ugd. s., Sp. st., n=58.

 $\begin{array}{l} \Delta v = 159 \ (2) \ (e); \ 269 \ (0) \ (e); \ 293 \ (4) \ (\pm e); \ 428 \ (3) \ (i, e, c); \ 493 \ (2) \ (e, c); \ 590 \\ (0) \ (e, c); \ 666 \ (1) \ (k, e); \ 821 \ (4) \ (k, e, c); \ 855 \ (4) \ (k, f, e); \ 899 \ (3) \ (k, e); \ 965 \ (4) \\ (k, e); \ 1030 \ (2) \ (k, e); \ 1104 \ (3b) \ (k, e); \ 1148 \ (1) \ (k, e); \ 1192 \ (6b) \ (k, e); \ 1272 \ (0) \\ (k, e); \ 1331 \ (2) \ (k, e); \ 1392 \ (2) \ (k, e); \ 1452 \ (4) \ (k, e); \ 1716 \pm 6^{1}_{2} \ (3) \ (e); \ 2921 \ (2) \\ (q, k, e); \ 2942 \ (7) \ (q, k, e); \ 2982 \ (4) \ (q, k, e); \ 3014 \ (5b) \ (q, k, e); \ 3062 \ (3) \ (k); \ 3092 \\ (2b) \ (q, o, k, i, e); \ 3106 \ (1?) \ (q). \end{array}$

16. Cyclopropan-carbonsäure - tert. - butylester, $C_3H_5 \cdot C0 \cdot OC(CH_3)_3$. Darstellung: 10 g Säurechlorid wurden bei 60° zutropfen gelassen zur äquivalenten Menge tert. Butylalkohol und einem geringen Überschuß Diäthyl-anilin. Nach kurzem Erwärmen wurde der Ester im Vakuum abdestilliert und noch zweimal im Vakuum fraktioniert. Sdp₁₂ 41°6-42°4 (Lit. Unbekannt). $n_d^{19'8}$ =1°4213. Bisherige Beobachtung: keine. Pl.-Nr. 2234, m. F., t=14; Ugd. s. s., Sp. st.; Pl. 2243, o. F., Sp. 0°04, t=20; letztere Aufnahme wegen überstarken Ugd's. fast nur im Violett verwendbar. n=60. $\Delta v = 157 (1?) (e); 267 (1) (e); 303 (2) (\pm e); 325 (1) (e); 417 (\frac{1}{2}) (e); 486 (3) \\ (k, e, c); 601 (1) (k, e, c); 669 (1) (k, e); 741 (3) (k, e, c); 786 (\frac{1}{2}) (k, e); 822 (2) \\ (k, e, c); 856 (3) (k, e, c); 890 (1) (k, e); 918 (1) (k, e); 954 (3) (k, e); 1033 (2) (k, e); \\ 1096 (1) (e); 1196 (5) (k, f, e); 1244 (1) (e); 1385 (3) (k, e); 1452 (5) (k, e); 1717 \pm 8 \\ (2) (e); 2875 (2) (p, k, e); 2929 (8) (q, k, e); 2980 (3b) (q, e); 3013 (6) (q, k, e); \\ 3060 (3) (k); 3090 (2) (q, e); 3106 (3) (q, k, e).$

17. Cyclopropan-carbonsäure-chlorid, $C_3H_5 \cdot CO \cdot Cl$. Darstellung aus der Säure und SOCl₂. Zweimal fraktioniert. Sdp.₇₂₃ 117'9-118'0°; Sdp.₇₆₀ 119'5 bis 119'6° (Lit. Sdp.₇₃₉ 118-119°; Sdp.₇₅₄ 120-122°; Sdp.₇₆₀ 119°). Bisherige Beobachtung: keine. Pl.-Nr. 2232, m. F., t=14; Pl. 2233, o. F., t=9; Ugd. s., Sp. st., n=58.

 $\Delta v = 228 (2) (k, e, c); 337 (4b) (k, \pm e, c); 411 (4) (k, \pm e); 433 (7) (k, \pm e, c);$ $472 (1) (k, e); 541 (5) (k, \pm e, c); 690 (3) (k, e); 812 (4) (k, e, c); 844 (3) (k, e); 868 (3) (k, e); 958 (4b) (k, e); 1038 (3) (k, i, e); 1107 (1/₂) (k, e); 1195 (6b) (k, e); 1355 (4) (k, e); 1425 (1) (k, e); 1447 (3) (k, e); 1770 \pm 8 (4b) (e); 2956 (1?) (q, k); 3021 (8) (q, k, i, e); 3052 (1/₂) (k); 3095 (4) (q, k, e); 3112 (5) (q, p, k).$

18. Essigsäure-tertiär-butylester, $H_3C \cdot CO \cdot OC(CH_3)_3$. Darstellung analog wie bei Nr. 16; vor der Aufnahme mehrmalige Destillation. Sdp.₇₈₀ 95'1-96'5''; .Sdp.₇₈₀ 96'3-97'7' (Lit. 97'8'). $n_d^{17'8}$ =1'3888; $n_d^{20'0}$ =1'3870 (Lit. n_d^{18} =1'3887; n_d^{25} =1'3838). Bisherige Beobachtung: keine. Pl.-Nr. 2203, m. F., t=14; Ugd. s., Sp. m.; Pl. 2205, o. F., t=20, Ugd. st., Sp. st., n=42.

 $\begin{array}{l} \Delta v = 317 \ (1) \ (e); \ 336 \ (3 \ b) \ (i, \ e, \ c); \ 370 \ (0?) \ (e); \ 451 \ (0) \ (e, \ c); \ 583 \ (0?) \ (e); \\ 630 \ (5) \ (k, \ i, \ e, \ c); \ 757 \ (3) \ (k. \ f, \ e, \ c); \ 838 \ (2) \ (k, \ e, \ c); \ 917 \ (2) \ (k, \ e); \ 945 \ (2) \ (k, \ e); \\ 1014 \ (1) \ (e); \ 1112 \ (0) \ (e); \ 1163 \ (0) \ (e); \ 1242 \ (1) \ (k, \ e); \ 1361 \ (0) \ (e); \ 1450 \ (3) \ (k, \ e); \\ 1725 \pm 6^{1/2} \ (0) \ (e); \ 2878 \ (2) \ (k, \ i, \ e); \ 2934 \ (8) \ (q, \ k, \ i, \ e); \ 2978 \ (4) \ (q, \ p, \ k, \ e). \end{array}$

19. n-Buttersäure-tertiär-butylester, $H_7C_3 \cdot CO \cdot OC(CH_3)_3$. Darstellung analog wie bei Nr. 16; vor der Aufnahme zweimalige Vakuum-Fraktionierung. $Sdp_{\cdot 14}$ 36-37°; $Sdp_{\cdot 725}$ 144-145°; $Sdp_{\cdot 760}$ 145-146'6° (Lit. Unbekannt). $n_d^{17'5} = 1'4001$ (Lit. Unbekannt). Bisherige Beobachtung: keine. Pl.-Nr. 2210, m. F., t=14; Ugd. s., Sp. st., Pl. 2211, o. F., t=12, Ugd. sst., Sp. sst.; n=46.

 $\begin{array}{l} \Delta v = 174 \ (1) \ (e); \ 290 \ (3) \ (\pm e); \ 324 \ (3) \ (e, c); \ 479 \ (0) \ (e); \ 600 \ (2) \ (k, \ i, \ e, \ c); \\ 748 \ (4) \ (k, \ e, \ c); \ 846 \ (3) \ (k, \ e, \ c); \ 869 \ (1) \ (k, \ e); \ 893 \ (2) \ (k, \ e); \ 922 \ (3) \ (k, \ e); \ 1038 \\ (3) \ (k, \ e); \ 1097 \ (1) \ (e); \ 1158 \ (0) \ (e); \ 1203 \ (0) \ (e); \ 1250 \ (2) \ (k, \ e); \ 1453 \ (8b) \ (k, \ e); \\ 1579 \ (0) \ (e); \ 1725 \pm 10 \ (2b) \ (e); \ 2877 \ (6) \ (p, \ k, \ e); \ 2931 \ (12b) \ (q, \ k, \ i, \ e); \ 2978 \ (8b) \\ (q, \ o, \ k, \ e); \ 3003 \ (4) \ (q, \ k). \end{array}$